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In this work we consider the steady state scaling behavior of directed percola-
tion around the upper critical dimension. In particular we determine numerically
the order parameter, its fluctuations as well as the susceptibility as a function of
the control parameter and the conjugated field. Additionally to the universal
scaling functions, several universal amplitude combinations are considered. We
compare our results with those of a renormalization group approach.
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1. INTRODUCTION

The concept of universality is one of the most impressive features of con-
tinuous phase transitions. It allows to group the great variety of models
into a small number of universality classes (see ref. 1 for a recent review).
Models within one class share the same critical exponents. Furthermore
their corresponding scaling functions become identical close to the critical
point. Often, universality classes are also characterized by certain ampli-
tude combinations, which are merely particular values of the scaling
functions. The most prominent examples of universal behavior are the
coexistence curve of liquid-vapor systems (2) and the equation of state in
ferromagnetic systems (e.g., refs. 1 and 3). Deciding on a systems univer-
sality class by considering the scaling functions instead of critical exponents
appears to be less prone to errors in most cases. While for the latter ones



the variations between different universal classes are often small, the
amplitude combinations and therefore the scaling functions may differ
significantly (see ref. 4).

Wilsons renormalization group (RG) approach lays the foundation for
an understanding of universality. (5, 6) It also yields a tool for computing
critical exponents as well as the universal scaling functions. While critical
exponents emerge from local properties near a given fixed point, scaling
functions require the knowledge of the full RG flow along the trajectories
between neighboring fixed points. This illustrates why scaling functions are
more sensitive than the corresponding exponents.

The RG explains the existence of an upper critical dimension Dc above
which the mean-field theory applies, i.e., classical theories, which neglect
strong fluctuations and correlations, provide correct estimates to the critical
exponents and scaling functions. Below Dc fluctuations become relevant and
the mean-field scenario breaks down. At the upper critical dimension the
RG equations yield mean-field exponents with logarithmic corrections. (7, 8)

In contrast to equilibrium critical phenomena less is known in the case
of non-equilibrium phase transitions. This is due to the fact that a general-
ized treatment is not possible, lacking an analog to the equilibrium free
energy. The rich and often surprising variety of phenomena has to be
studied for each system individually. The scaling behavior of directed per-
colation (DP) is recognized as the paradigm of the critical behavior of
several non-equilibrium systems which exhibit a continuous phase transi-
tion from an active to an absorbing state (see, e.g., ref. 9). The widespread
occurrence of such models describing phenomena in physics, biology, as
well as catalytic chemical reactions is reflected by the well known univer-
sality hypothesis of Janssen and Grassberger: Short-range interacting
models, which exhibit a continuous phase transition into a unique absorb-
ing state belong to the DP universality class, provided they have a one-
component order parameter and no additional symmetries. (10, 11) Different
universality classes are expected to occur in the presence of additional
symmetries, like particle conservation, (12) particle-hole symmetry (compact
directed percolation), (13) or parity conservation (e.g., branching annihilating
random walks with an even number of offsprings). (14) Other model details,
such as, e.g., the geometry or shape of a lattice, are expected to have no
influence on the scaling behavior in the vicinity of the critical point.

The universality hypothesis still awaits a rigorous proof. Amazingly,
numerous simulations suggest that the DP universality class is even larger
than expected. It turns out that the hypothesis defines only a sufficient
condition but fails to describe the DP class in full generality (see ref. 9 for a
detailed discussion). For instance, the pair contact process (PCP) is one of
the simplest models with infinitely many absorbing states exhibiting
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a continuous phase transition. (15) It was shown that the critical scaling
behavior of the one-dimensional PCP is characterized by the same critical
exponents (15, 16) as well as by the same universal scaling functions as DP. (17)

Thus despite the different structure of the absorbing phase the one-dimen-
sional PCP belongs to the DP universality class. This numerical evidence
confirms a corresponding RG-conjecture. (18) But one has to mention that a
recently performed RG analysis conjectures a different scaling behavior of
both models in higher dimensions. (19)

In this work we consider the universal scaling behavior of directed
percolation in various dimensions. Whereas most investigations on DP
follow the seminal work ref. 20 and thus focus on activity spreading we
examine the steady state scaling behavior for D \ 2. We determine the uni-
versal scaling functions of the order parameter (i.e., the equation of state)
and its fluctuations. Furthermore we consider certain universal amplitude
combinations which are related to the order parameter and its suscepti-
bility. These amplitude combinations are immediately related to particular
values of the universal scaling functions and are of great experimental
interest. (4) We will see that the numerically obtained universal scaling func-
tions and the related universal amplitude combinations allow a quantitative
test of RG-results. The powerful and versatile E-expansion provides esti-
mates of almost all quantities of interest, e.g., the critical exponents and the
scaling functions (see, e.g., ref. 21). Unfortunately it is impossible to esti-
mate within this approximation scheme the corresponding error-bars. Thus
it is intriguing to compare our results with those of RG analysis. (22, 23)

Furthermore we focus on the phase transition at the upper critical
dimension Dc=4. There the usual power-laws are modified by logarithmic
corrections. These logarithmic corrections are well established in equilib-
rium critical phenomena (7, 8) but they have been largely ignored for non-
equilibrium phase transitions. Due to the considerable numerical effort,
sufficiently accurate simulation data for non-equilibrium systems became
available only recently: Investigated systems include self-avoiding random
walks, (24, 25) self-organized critical systems, (26, 27) depinning-transitions in
disordered media, (28) isotropic percolation, (29) as well as absorbing phase
transitions. (30) On the other hand, the numerical advance triggered further
analytical RG calculations yielding estimates for the logarithmic correction
exponents for the respective systems. (23, 31–33)

The outline of the present paper is as follows: The next section con-
tains the model definition and a description of the method of numerical
analysis. In Section 3 we describe the scaling behavior at the critical point
and introduce the critical exponents as well as the universal scaling
functions. The numerical data of the order parameter and its fluctuations
are analyzed in Section 4 below (D=2, 3), above (D=5), and at the upper
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critical dimension (D=4). Several amplitude combinations are considered
in Section 5. Concluding remarks are given in Section 6.

2. MODEL AND SIMULATIONS

In order to examine the scaling behavior of the D-dimensional DP
universality class we consider the directed site percolation process using a
generalized Domany–Kinzel automaton. (34) It is defined on a D+1-
dimensional body centered cubic (bcc) lattice (where time corresponds to
the [0, 0,..., 0, 1] direction) and evolves by parallel update according to the
following rules: A site at time t is occupied with probability p if at least one
of its 2D backward neighboring sites (time t − 1) is occupied. Otherwise the
site remains empty. Furthermore, spontaneous particle creation may take
place at all sites with probability p0. Directed site percolation corresponds
to the choice p0=0. The propagation probability p is the control param-
eter of the phase transition, i.e., below a critical value pc the activity ceases
and the system is trapped forever in the absorbing state (empty lattice). On
the other hand a non-zero density of (active) particles ra is found for
p > pc. The best estimates of the critical value of directed site percolation
on bcc lattices are pc=0.705489(4) (35) for D=1 and pc=0.34457(1) (36) for
D=2.

The order parameter ra of the absorbing phase transition vanishes at
the critical point according to

ra 3 dpb, (1)

with dp=(p − pc)/pc. Furthermore the order parameter fluctuations
Dra=LD(Or2

aP−OraP
2) diverge as

Dra 3 dp−cŒ. (2)

The fluctuation exponent c − obeys the scaling relation c −=Dn+ − 2b, (16)

where n+ describes the divergence of the spatial correlation length at the
critical point. The critical behavior of the order parameter is shown in
Fig. 1 for D=2. The data are obtained from numerical simulations of
systems with periodic boundary conditions. Considering various system
sizes L we take care that our results are not affected by finite-size effects.
The system is started from a random initial configuration. After a certain
transient regime a steady state is reached, which is characterized by the
average particle density ra and its fluctuations Dra.

Similar to equilibrium phase transitions it is possible in DP to apply
an external field h that is conjugated to the order parameter. Being
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Fig. 1. The two-dimensional directed percolation order parameter ra as a function of the
particle density for zero field (symbols) and for various values of the external field
(h=3 × 10−4, 10−4, 2 × 10−5, 5 × 10−6, 10−6) (lines). The inset displays the order parameter
fluctuations Dra for zero field (symbols) and for various values of the external field h (lines).

a conjugated field it has to destroy the absorbing phase and the corre-
sponding linear response function has to diverge at the critical point i.e.,

qa=
“ra

“h
Q .. (3)

In DP the external field is implemented (9, 17) as a spontaneous creation of
particles (i.e., p0=h > 0). Clearly, the absorbing state and thus the phase
transition are destroyed. Figure 1 shows how the external field results in a
smoothening of the zero-field order parameter curve. The inset displays
that the fluctuations are peaked for finite fields. Approaching the transition
point (h Q 0) this peak becomes a divergence signalling the critical point.

3. UNIVERSAL SCALING FORMS

Sufficiently close to the critical point the order parameter, its fluctua-
tions, as well as the order parameter susceptibility can be described by
generalized homogeneous functions

ra(dp, h) ’ l−bR̃(ap dp l, ahhls), (4)

aD Dra(dp, h) ’ lcŒD̃(ap dp l, ahhls), (5)

aqqa(dp, h) ’ lcC̃(ap dp l, ahhls). (6)

Universal Scaling Behavior of Directed Percolation 1235



Note that these scaling forms are valid for D ] Dc. At the upper critical
dimension Dc they have to be modified by logarithmic corrections. (30)

Taking into consideration that the susceptibility is defined as the derivative
of the order parameter with respect to the conjugated field [Eq. (3)] we
find C̃(x, y)=“yR̃(x, y), aq=a−1

h , as well as the Widom scaling law

c=s − b. (7)

The universal scaling functions R̃, D̃, and C̃ are identical for all
models belonging to a given universality class whereas all non-universal
system-dependent details (e.g., the lattice structure, range of interactions,
the update scheme, etc.) are contained in the so-called non-universal metric
factors ap, ah, and aD. (37) The universal scaling functions can be normalized
by the conditions R̃(1, 0)=R̃(0, 1)=D̃(0, 1)=1. In that case the non-
universal metric factors are determined by the amplitudes of the corre-
sponding power-laws

ra(dp, h=0) ’ (ap dp)b, (8)

ra(dp=0, h) ’ (ahh)b/s, (9)

aD Dra(dp=0, h) ’ (ahh)−cŒ/s. (10)

Furthermore we just mention that C̃(0, 1)=b/s, following trivially from
the definition of the susceptibility.

Usually, an analytical expression for the scaling functions is only
known above Dc, where mean-field theories apply. In the case of directed
percolation the mean-field scaling functions are given by (see, e.g., ref. 38)

R̃MF(x, y)=
x
2

+=y+1x
2
22

, (11)

D̃MF(x, y)=
R̃MF(x, y)

`y+(x/2)2
, (12)

C̃MF(x, y)=
1

2 `y+(x/2)2
, (13)

i.e., the mean-field exponents are bMF=1, sMF=2, cMF=1, and c −

MF=0
(corresponding to a finite jump of the fluctuations). Below Dc the universal
scaling functions depend on dimensionality and are unknown due to a lack
of analytical solutions. In this case the scaling functions have to be deter-
mined numerically or via approximation schemes, e.g., series expansions or
E-expansion of RG approaches.
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In case of the mean-field solution (c −

MF=0) the scaling form of the
fluctuations [Eq. (5)] reduces to

aD Dra(dp, h) ’ D̃(ap dp l, ahh ls). (14)

Some interesting properties of the universal scaling function D̃ can be
derived from this form. The non-universal metric factor aD is determined
by

aD=
1

Dra(dp=0, h)
(15)

using that D̃(0, 1)=1. The value D̃(1, 0) is then given by

D̃(1, 0)=
Dra(dp, h=0)
Dra(dp=0, h)

. (16)

Finally, it is worth mentioning that the mean-field scaling function D̃
fulfills the symmetries

D̃(1, x)=D̃(x−1/s, 1) (17)

D̃(x, 1)=D̃(1, x−s) (18)

for all positive x. In particular we obtain for x Q 0 D̃(1, 0)=D̃(., 1) and
D̃(0, 1)=D̃(1, .), respectively.

4. EQUATION OF STATE AND FLUCTUATIONS

4.1. Below the Upper Critical Dimension

The scaling forms Eqs. (4)–(6) imply that curves corresponding to
different values of the conjugated field collapse to the universal functions
R̃(x, 1), D̃(x, 1), C̃(x, 1), if ra (ahh)−b/s, aDDra (ahh)cŒ/s, and aqqa (ahh)c/s

are considered as functions of the rescaled control parameter ap dp (ahh)−1/s.
In a first step, the non-universal metric factors ap, ah, aD are obtained from
measuring the power-laws Eqs. (8)–(10) (see Table II). Here, the best
known estimates for critical exponents, as given in Table I, are used.

Subsequently, the rescaled order parameter and its fluctuations as a
function of the rescaled control parameter are plotted for two- and three-
dimensional DP (Figs. 2 and 3). A convincing data collapse is achieved,
confirming the scaling ansatz as well as the values of the critical exponents.
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Table I. The Critical Exponents of Directed Percolation for

Various Dimensions D. The One-Dimensional Values Were

Obtained in a Famous Series Expansion by Jensen.(49) For

D=2 and D=3 the Authors Investigated Activity Spreading and

the Presented Exponents Are Derived via Scaling Relations.

A Complete List of all Critical Exponents of DP can be Found

in Ref. 9. The Symbol g Denotes Logarithmic Corrections to the

Power-Law Behavior

D 1 (49) 2 (50) 3 (51) 4 MF

b 0.276486(8) 0.584(4) 0.81(1) 1g 1
s 2.554216(13) 2.18(1) 2.04(2) 2g 2
c − 0.543882(16) 0.300(11) 0.123(25) 0g 0

Besides the universal scaling function R̃(x, 1) the corresponding curve
of an E-expansion obtained from a renormalization group analysis is shown
in Figs. 2 and 3. Using the parametric representation (39, 40) of the absorbing
phase transition, Janssen et al. showed that the equation of state is given by
the remarkably simple scaling function (22)

H(h)=h (2 − h)+O(E3), (19)
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Fig. 2. The universal scaling plots of the order parameter and its fluctuations (inset) for
D=2. The dashed line corresponds to an E-expansion of a RG approach. (22)
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Fig. 3. The universal scaling plots of the order parameter and its fluctuations (inset) for
D=3 and for various values of the external field (h=3 × 10−4, 10−4, 2 × 10−5, 4 × 10−6,
5 × 10−7). The dashed line corresponds to an E-expansion of a RG approach. (22)

where E denotes the distance to the upper critical dimension Dc=4, i.e.,
E=Dc − D. Here the scaling behavior of the quantities ra, dp, and h is
transformed to the variables R and h through the relations

b dp=R(1 − h), ra=Rb
h

2
. (20)

The equation of state is given by

ah=1Rb

2
2d

H(h) (21)

with the metric factors a and b. The whole phase diagram is described by
the parameter range R \ 0 and h ¥ [0, 2]. In Figs. 2 and 3 a comparison
between the numerically obtained scaling functions and the analytical result
of Eqs. (19)–(21) is made. The RG-data differ slightly from the universal
function. As expected the differences decrease with increasing dimension
and are especially strong in D=1. (17) This point is discussed in detail
below.

4.2. Above the Upper Critical Dimension

Above the upper critical dimension the scaling behavior of a phase
transition equals the scaling behavior of the corresponding mean-field
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solution [Eqs. (11)–(13)]. Plotting ra/`ahh as a function of ap dp/`ahh,
the numerical data should collapse to the universal scaling function

R̃MF(x, 1)=
x
2

+=1+1x
2
22

(22)

with the scaling variable x=ap dp/`ahh. In Fig. 4 we plot the corre-
sponding rescaled data of the five-dimensional model. A perfect collapse of
the numerical data and R̃(x, 1) is obtained. This is a confirmation of the
RG-result Dc=4. (41, 42) To the best of our knowledge no numerical evidence
that five-dimensional DP exhibits mean-field scaling behavior was
published so far.

The rescaled fluctuation data is presented in Fig. 4. As for the univer-
sal order parameter, the data of the fluctuations are in agreement with the
corresponding universal mean-field scaling function

D̃MF(x, 1)=1+
x

2 `1+(x/2)2
. (23)
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Fig. 4. The universal scaling plots of the order parameter and its fluctuations (inset) for
D=5 and for various values of the external field (h=5 × 10−5, 7 × 10−5, 10−6, 7 × 10−7).
The dashed lines correspond to the mean-field solutions R̃MF(x, 1) and D̃MF(x, 1) [see
Eqs. (22) and (23)].
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4.3. At the Upper Critical Dimension

At the upper critical dimension Dc=4 the scaling behavior is governed
by the mean-field exponents modified by logarithmic corrections. For
instance the order parameter obeys in leading order

ra(dp, h=0) 3 dp |ln dp|B, (24)

ra(dp=0, h) 3 `h |ln h|S. (25)

The logarithmic correction exponents B and S are characteristic features
of the whole universality class similar to the usual critical exponents.
Numerous theoretical, numerical, as well as experimental investigations of
critical systems at Dc have been performed (see for instance, refs. 23, 26–28,
32, 33, 43–47)). Logarithmic corrections make the data analysis quite
difficult. Hence most investigations are focused on the determination
of the correction exponents only, lacking the determination of the scaling
functions at Dc.

Recently, a method of analysis was developed to determine the uni-
versal scaling functions at the upper critical dimension. (30) In this work the
authors use the phenomenological scaling ansatz (all terms in leading
order)

aara(dp, h) ’ l−bMF |ln l| l R̃(ap dp l |ln l|b, ahhlsMF |ln l| s), (26)

with bMF=1 and sMF=2. Therefore, the order parameter at zero field
(h=0) and at the critical point (dp=0) are given in leading order by

aara(dp, h=0) ’ ap dp |ln ap dp|B R̃(1, 0), (27)

aara(dp=0, h) ’ `ahh |ln `ahh|S R̃(0, 1) (28)

with B=b+l and S=s/2+l. Similar to the case D ] Dc the normalization
R̃(0, 1)=R̃(1, 0)=1 was used. According to the ansatz Eq. (26) the scaling
behavior of the equation of state is given in leading order by

aara(dp, h) ’ `ahh |ln `ahh|S R̃(x, 1) (29)

where the scaling argument is given by

x=ap dp `ahh−1 |ln `ahh|X (30)

with X=b − s/2=B − S.
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In case of directed percolation it is possible to confirm the scaling
ansatz Eq. (26) by a RG-approach. (23) In particular the logarithmic correc-
tion exponents are given by l=7/12, b=−1/4, and s=−1/2. Thus the
scaling behavior of the equation of state is determined by the logarithmic
correction exponents (23)

B=S=1/3, X=0. (31)

It is worth mentioning that in contrast to the RG results below the upper
critical dimension the logarithmic correction exponents do not rely on
approximation schemes like E- or 1/n-expansions. Within the RG theory
they are exact results.

Similarly to the order parameter the following form is used for its
fluctuations (30)

aD Dra(dp, h) ’ lcŒ |ln l|k D̃(ap dp l |ln l|b, ahhl−s |ln l| s). (32)

Using the mean-field value c −=0 and taking into account that numerical
simulations show that the fluctuations remain finite at the critical point
(i.e., k=0) the scaling function

aD Dra(dp, h) ’ D̃(x, 1) (33)

is obtained, where the scaling argument x is given by Eq. (30) with X=0.
The non-universal metric factor aD is determined again by the condition
D̃(0, 1)=1.

Thus the scaling behavior of the order parameter and its fluctuations
at Dc is determined by two exponents (B=1/3 and S=1/3) and four
unknown non-universal metric factors (aa, ap, ah, aD). Following (30) we
determine these values in our analysis by several conditions which are
applied simultaneously: first, both the rescaled equation of state and the
rescaled order parameter fluctuations have to collapse to the universal
functions R̃(x, 1) and D̃(x, 1). Second, the order parameter behavior at
zero field and at the critical density are asymptotically given by the simple
function f(x)=x when plotting [aara(dp, 0)/ap dp]1/B vs. |ln ap dp| and
[aara(0, h)/`ahh]1/S vs. |ln `ahh |, respectively. Applying this analysis we
observe convincing results for B=S=1/3, X=0, and for the values of
the non-universal metric factors listed in Table II. The corresponding plots
are presented in Fig. 5.
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Table II. The Non-Universal Quantities for Site Directed Perco-

lation on a bcc Lattice for Various Dimensions. The Uncertainty of

the Metric Factors Is Less than 7%. The Values for D=1 Are

Obtained From a Previous Work.(17)

D pc a a ap ah aD

1 0.705489 ± 0.000004 2.498 0.114 9.382
2 0.344575 ± 0.000015 0.795 0.186 9.016
3 0.160950 ± 0.000030 0.417 0.328 11.91
4 0.075582 ± 0.000017 14.70 3.055 59.80 19.19
5 0.035967 ± 0.000023 0.114 0.174 42.49

5. UNIVERSAL AMPLITUDE COMBINATIONS

In the following we consider several universal amplitude combinations
(see ref. 4 for an excellent review). As pointed out in ref. 4, these amplitude
combinations are very useful in order to identify the universality class
of a phase transition since the amplitude combinations vary more widely
than the corresponding critical exponents. Furthermore, the measurement
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Fig. 5. The universal scaling plots of the order parameter and its fluctuations (upper left
inset) at the upper critical dimension Dc=4 for various values of the external field
(h=5 × 10−5, 2 × 10−5, 8 × 10−6, 4 × 10−6, 2 × 10−6). The logarithmic correction exponents are
given by b=S=1/3 (23) and X=0. The right insets show the order parameter at the critical
density and for zero field, respectively. The order parameter is rescaled according to Eqs. (27)
and (28). Approaching the transition point (h Q 0 and dp Q 0) the data tend to the function
f(x)=x (dashed lines) as required.
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of amplitude combinations in experiments or simulations yields a reliable
test for theoretical predictions. In particular, estimates of amplitude
combinations are provided by RG approximation schemes like E- or
1/n-expansions.

Usually numerical investigations focus on amplitude combinations
arising from finite-size scaling analysis. A well known example is the value
of Binder’s fourth order cumulant at criticality (see, e.g., ref. 48). Instead of
those finite-size properties we continue to focus our attention to bulk criti-
cal behavior since bulk amplitude combinations are of great experimental
interest. Furthermore, they can be compared to RG-results. (22)

The susceptibility diverges as

q(dp > 0, h=0) ’ aq, + dp−c, (34)

q(dp < 0, h=0) ’ aq, − (−dp)−c, (35)

if the critical point is approached from above and below, respectively. The
amplitude ratio

q(dp > 0, h=0)
q(dp < 0, h=0)

=
aq, +

aq, −
(36)

is a universal quantity similar to the critical exponents, i.e., all systems
belonging to a given universality class are characterized by the same value
aq, +/aq, − . This can be seen from Eq. (6). Setting ap |dp| l=1 yields

q(dp > 0, h)
q(dp < 0, h)

=
C̃(+1, x)
C̃(−1, x)

(37)

with x=ahh |ap dp|−s. Obviously this is a universal quantity for all values
of the scaling variable x. In particular it equals the ratio aq, +/aq, − for
x Q 0, i.e., vanishing external field. In general, universal amplitude combi-
nations are related to particular values of the universal scaling functions.

In Fig. 6 the universal susceptibility ratio Eq. (37) is shown for various
dimensions. The corresponding data saturates for x Q 0. Our estimates for
the amplitude ratios C̃(+1, 0)/C̃(−1, 0) are 0.033 ± 0.004 for D=1,
0.25 ± 0.01 for D=2, as well as 0.65 ± 0.03 for D=3. In case of five-
dimensional DP the amplitude ratio is constant, as predicted from the
mean-field behavior

C̃MF(+1, x)

C̃MF(−1, x)
=1 (38)

1244 Lübeck and Willmann



10
–4

10
–2

10
0

10
2

10
4

10
6

ahh |apδρ|
–σ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

χ(
δp

>
0,

h)
 / 

χ(
δp

<
0,

h)

D=1
D=2
D=3
D=5
ε2

Fig. 6. The universal scaling function C̃(1, x)/C̃(−1, x) for various dimensions. The dashed
lines correspond to an E-expansion of a RG approach. (22) The universal amplitude
C̃(1, 0)/C̃(−1, 0) is obtained from the extrapolation ahh |ap dp|−s

Q 0.

for all x. The behavior of the ratio C̃(+1, x)/C̃(−1, x) for D < Dc reflects
the crossover from mean-field to non mean-field behavior. Far away from
the transition point, the critical fluctuations are suppressed and the behav-
ior of the system is well described by the mean-field solution [Eq. (38)].
Approaching criticality the critical fluctuations increase and a crossover to
the D-dimensional behavior takes place.

In the already mentioned work, (22) Janssen et al. calculated the steady
state scaling behavior of DP within a RG approach. In particular they
obtained for the susceptibility amplitude ratio

C̃(+1, 0)

C̃(−1, 0)
=1 −

E

3
51 −1 11

288
−

53
144

ln
4
3
2 E+O(E2)6 (39)

leading to − 0.2030... for D=1, 0.2430... for D=2, 0.6441... for D=3,
Except for the unphysical one-dimensional result these values agree well
with our numerical estimates.

Furthermore the parametric representation of the susceptibility was
derived in ref. 22 and it is straight forward to calculate the universal ratio
Eq. (37). The results are plotted for various dimensions in Fig. 6. It is
instructive to compare these results with the numerical data since the
theoretical curve reflects the accuracy of the RG estimations of all three
quantities, the exponent, the scaling function, as well as the non-universal
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metric factors. All quantities are well approximated for the three-dimen-
sional model. In the two-dimensional case we observe a horizontal shift
between the numerical data and the RG-estimates. Thus the RG-approach
yields good estimates for the exponents and the scaling function but
the metric factors are of significantly less quality. For D=1 the
E2-approximation does not provide appropriate estimates of the DP scaling
behavior. Thus higher orders than O(E2) are necessary to describe the
scaling behavior of directed percolation in low dimensions.

Analogous to the susceptibility the universal amplitude ratio of the
fluctuations is given by

Dra(dp > 0, h)
Dra(dp < 0, h)

=
D̃(+1, x)

D̃(−1, x)
(40)

with x=ahh |ap dp|−s. In the case of absorbing phase transitions this ratio
diverges for vanishing field. For dp < 0 the order parameter fluctuations
are zero (absorbing state) for vanishing field whereas the fluctuations
remain finite above the transition (dp > 0). Thus absorbing phase transi-
tions are generally characterized by

D̃(+1, 0)

D̃(−1, 0)
Q .. (41)

In Fig. 7 we plot the fluctuation ratio [Eq. (40)] as a function of the
scaling variable ahh |ap dp|−s for various dimensions. We observe in all
cases that the fluctuation ratios diverge for x Q 0. Only the one-dimen-
sional system exhibits a particular behavior characterized by the minimum
of the corresponding curve. The origin of this behavior is that for D=2, 3
the universal scaling function D̃(x, 1) exhibits a maximum for x > 0,
whereas for D=1 it is located at x < 0 (see Fig. 8 in ref. 17).

In the five-dimensional model we observe a perfect agreement with the
mean-field behavior

D̃MF(+1, x)

D̃MF(−1, x)
=

1+`1+4x

− 1+`1+4x
|0
x Q 0

1+2x
2x

. (42)

Surprisingly, the two- and three-dimensional data are also well approxi-
mated by this formula provided that one performs a simple rescaling
(x W aDx) which results in Fig. 7 in a horizontal shift of the data. We
suppose that this behavior could be explained by a RG-analysis of the
fluctuations.
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Similar to the universal amplitude ratios of the susceptibility and the
fluctuations other universal combinations can be defined. Well known from
equilibrium phase transitions is the quantity (see, e.g., ref. 4)

Rq=C dcBd − 1, (43)

which is also experimentally accessible, e.g., for magnetic systems. Here, C

denotes the amplitude of the susceptibility q in zero field (q ’ C dT−c) and
B is the corresponding amplitude of the order parameter M (M ’ B dTb).
The factor dc describes how the order parameter M depends on the conju-
gated field H at dT=0 (H ’ dc Md).

In case of directed percolation these amplitudes correspond to the
values B=ab

p R̃(1, 0), C=ac
p ah C̃(1, 0) as well as dc=a−1

h R̃(0, 1)−d where
d=s/b. The normalizations R̃(1, 0)=R̃(0, 1)=1 yield for the amplitude
combination

Rq=C̃(1, 0) (44)

which is obviously a universal quantity. In Fig. 8 the scaling function
C̃(1, x) is plotted as a function of x=ahh (ap dp)−s for D=1, 2, 3. The
corresponding data saturates for x Q 0. Our estimates are Rq=0.60 ± 0.04
for D=1, Rq=0.72 ± 0.04 for D=2, and Rq=0.86 ± 0.08 for D=3. Note
that the error-bars reflect only the data scattering in Fig. 8. In contrast to
the amplitude C̃(1, 0)/C̃(−1, 0) the data of Rq are affected by the uncer-
tainties of the exponent c and the uncertainties of the metric factors ap, ah.
These uncertainties increase the error-bars significantly. The two- and three-
dimensional data agree quite well with the RG-results Rq=0.7244... for
D=2 and Rq=0.9112... for D=3. (22) In the one-dimensional model the
E2-expansion yields again an unphysical result (Rq=−3.927...).

6. CONCLUSIONS

We considered the universal steady state scaling behavior of directed
percolation with an external field in D \ 2 dimensions. Our data for D=5
coincide with the mean field solution, confirming that Dc=4 is the upper
critical dimension. At Dc we presented for the first time a numerical scaling
analysis of DP including logarithmic corrections. Our results agree well
with those of a recently performed RG approach. (23) Apart from the scaling
functions we also considered amplitude ratios and combinations for the
order parameter fluctuations and the susceptibility. A comparison with
RG (22) results reveals that higher orders than O(E2) are necessary to
describe the scaling behavior in low dimensions.
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